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We describe how cosmology has converged towards a beautiful model of the universe:
the Big Bang universe. We praise this model, but show that there is a dark side to
it. This dark side is usually called ‘the cosmological problems’: a set of coincidences
and fine-tuning features required for the Big Bang universe to be possible. After
reviewing these ‘riddles’, we show how they have acted as windows into the very
early universe, revealing new physics and new cosmology just as the universe came
into being. We describe inflation, pre-Big Bang, and varying-speed-of-light theories.
At the end of the millennium, these proposals are seen, respectively, as a paradigm,
a tentative idea, and an outright speculation.
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1. The Big Bang riddles

The Big Bang universe is a success story. It makes use of the general theory of
relativity to set up the most minimalistic model for our universe. According to this
model, the embryo universe was concentrated in a single point, which exploded in a
Big Bang event some 15 billion years ago. The Big Bang universe is homogeneous
in space and expands as time progresses: a dynamical prediction of relativity. An
elegant explanation for an ever-growing array of observations ensues.

A closer examination of this model, however, reveals a number of unnatural fea-
tures. The Big Bang universe is fragmented into many small regions, which are so
far apart that light, or indeed any interaction, has not had time to travel between
them. These ‘horizons’ are, therefore, unaware of each other, yet mysteriously share
the same properties, such as age and temperature. It almost looks as if telepathic
communication has taken place between disconnected regions. Another puzzle is the
observed near-flatness of the universe. Flatness is central to successful Big Bang mod-
els, but is unfortunately not stable. Big Bang models may be open (hyperbolic), flat
or closed (spherical). Closed Big Bang models expand to a maximum size, and then
recollapse, dying in a ‘big crunch’. Open models expand too fast, leaving the universe
empty soon after the Big Bang. The problem is that even slight deviations from flat-
ness grow very quickly, leading, inevitably, to either a catastrophic ‘big crunch’ or
emptiness. The fact that neither has occurred means that we are successfully walk-
ing on a tightrope. Short of invoking divine intervention, how can we possibly have
managed this for so long?

Thankfully, a number of natural explanations have been put forward. In all of
these, the riddles plaguing the Big Bang act as windows into new physics. Inflationary
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models of the universe, which have become a paradigm in modern cosmology, were
undoubtedly born out of these puzzles. Inflation is perhaps the simplest addition to
the Big Bang that leaves behind a universe without mystery. Another explanation is
the so-called pre-Big Bang model. This is inspired by string theory and explores the
possibility of the universe existing before the Big Bang. In the progenitor universe
lies the secret of the riddles. The most radical explanation is a recent proposal,
involving a revision of the special theory of relativity. According to this proposal,
light might have travelled much faster in the early universe. The varying-speed-of-
light cosmology explains the puzzles solved by inflation and pre-Big Bang models,
and maybe some additional riddles, too.

In this paper we review the Big Bang model (§ 2) and its riddles (§ 3). We then
describe solutions to these riddles: inflation (§ 4), pre-Big Bang (§ 5), and varying-
speed-of-light (§ 6) models. We conclude with an assessment of the state of the art.

2. The bright side of Big Bang cosmology

Cosmology, the study of the universe, was, for a long time, the subject of religion.
That it has become a branch of physics is a surprising achievement. Why should a
system as apparently complex as the universe ever be amenable to scientific scrutiny?
At the start of this century, however, it became obvious that in a way the universe is
far simpler than, say, an ecosystem or an animal. In many ways, even a suspension
bridge is far harder to describe than the dynamics of the universe.

The big leap occurred as a result of the discovery of the theory of relativity in
conjunction with improvements in astronomical observations. If we look at the sky,
we see an overwhelming plethora of detail: planets, stars, the Milky Way, the nearby
galaxies. At first, the task of predicting the behaviour of the universe as a whole
looks akin to predicting the world’s weather, or the currents in the oceans.

If we look harder, we start to see that such structures are mere details. With
better telescopes we can zoom out to find that galaxies, clusters of galaxies, even
the largest structures we can see, become ‘molecules’ of a rather boring soup; a very
homogeneous soup called the cosmological fluid. The subject of cosmology is the
dynamical behaviour of this fluid when left to evolve according to its own gravitation.
The crucial feature is the fact that this fluid appears to be expanding: its ‘molecules’
are moving away from each other.

What set the universe in motion? Can physics explain this phenomenon? That
was one of the many historical roles played by the theory of relativity. The result is
encoded in what came to be known as the Big Bang model of the universe. Here,
we shall attempt to convey the essence of this model in a Newtonian version of the
theory that imports all the relevant relativistic aspects.

Let us start by assuming that the cosmological fluid is homogeneous and also that
at every point all directions are equivalent, that is we have isotropy (note that homo-
geneity does not imply isotropy). Isotropy requires that the only possible motion
relative to any given point O be radial motion. Imagine a sphere around O, and con-
sider the velocity vectors of points on this sphere. Now try to comb this sphere (that
is, to add a tangential component to these velocities). There will always be a bald
patch, no matter how careful one is. Such a bald patch provides a preferred direction,
contradicting isotropy. Therefore, isotropy is a hair-raising experience, allowing only
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Figure 1. Constraints imposed by homogeneity upon the cosmologic expansion.

radial motion. Any observer can, at most, see outwards or inwards motion around
itself. We shall assume for the rest of the argument that this motion is outwards.

The speed at which this motion takes place may depend on the distance and on
time, but the function must be the same for all central points O considered. This
imposes constraints on the form of this function. Consider three collinear points A,
B and C, with B at distance R from A and B (see figure 1). In the rest frame of A,
let the velocities of B and C be v1 and v2 (top case in figure 1). If we now consider
the situation from the point of view of B, C is at a distance R and has velocity
v2 − v1 (bottom case in figure 1). However, given homogeneity, what B now sees
at C should be what A sees at B. Hence, v1 = v2 − v1, that is v2 = 2v1. Going
back to the perspective of A, we now find that points at twice the distance move at
twice the speed. More generally v = Hd: the recession speed away from any point
O is proportional to the distance. H is called the Hubble ‘constant’. It is not really
a constant, but may depend only on time.

This is a weird law. Any point O sees the stuff of the universe receding away
from it; the further away it is the faster it recedes. Let us first simplify life, and
ignore gravity, so that these speeds do not change in time. Then a cataclysm must
have happened in the past. If an object at distance d is moving at speed v = Hd,
then rewinding the film by δt = d/v = 1/H will show that this object was ejected
from O. The rewind time is, however, the same for objects at any distance d, and is
always δt = 1/H. Points further away are moving faster, and, therefore, crossed their
greater distance from O in the same time. Hence, at a time δt = 1/H into the past,
the whole observable universe was ejected from point O, but O can be any point.
Therefore, the whole universe started from a single point in a big explosion: the Big
Bang. Gravity complicates but does not alter this argument.

We shall now include gravity using O-level algebra. The lazy reader may skip this
effort: the above already allows pretentious statements about creation to be made.
Let us again consider the perspective of a point O, and imagine a small test particle
with mass m at distance d. The gravitational force on the mass m is determined by
the mass M inside a sphere centred at O and with radius d (see figure 2). If ρ is the
mass density of the universe, this mass is M = 4

3πd3ρ. Energy conservation requires
that

−(GMm/d) + 1
2mv2 = C (2.1)
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Figure 2. The set-up for deriving Friedmann equations.

(where v is m’s velocity), and Newton’s law implies that

mv̇ = −(GMm/d2), (2.2)

where G is the gravitational constant. If we label particle m with a comoving coor-
dinate l, then we may write its position as d(t) = a(t)l. We call a the expansion
factor of the universe. The particle velocity is then v = (ȧ/a)d and its acceleration
is v̇ = (ä/a)d. With these rearrangements, we can derive the Friedmann equations,

(
ȧ

a

)2

= 8
3πGρ − Kc2

a2 , (2.3)

ä

a
= −4

3πG

(
ρ + 3

p

c2

)
, (2.4)

in which K = −2C/(ml2c2). In the second equation, we have included an extra
term in p, the pressure in the universe, which does not follow from the Newtonian
argument. This is a correction imposed by general relativity even in the Newtonian
limit. In relativity, the gravitational mass is not given by the mass density ρ alone,
the pressure contributes as well. We may regard ρ+3p/c2 as the active gravitational
mass density of the universe. This subtlety will be of great importance later on.

We see that there is still a Big Bang even when gravity is taken into account. The
Friedmann equations give a ∝ t2/3 for a universe with no pressure (dust) as t → 0,
regardless of the constant K. The early universe is, in fact, filled with radiation, for
which p = 1

3ρc2. In this case, a ∝ t1/2 as t → 0, for all K. In either case, we see that
a → 0 as t → 0, that is we have a Big Bang.

The previous argument is naturally oversimplified. As d increases, the recession
speed v increases until it eventually approaches the speed of light c. The Newtonian
argument then breaks down, since special relativity invalidates the numerous changes
of frame used. Nonetheless, the Newtonian argument does give the correct equations.
Equations (2.3) and (2.4) are Einstein’s equations for a uniform and isotropic space-
time.

One significant novelty is introduced by relativity. In relativity, the objects in the
universe are not moving away from each other. Rather, they are fixed in space, and
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Figure 3. The three spatial geometries of Friedmann models.

space is expanding. Another novelty is a better interpretation of the constant K that
appears in the equations. This constant describes the curvature of the expanding
space, and a can always be redefined so that K = 0,±1. Given homogeneity, the
expanding space can only be a three-dimensional sphere (K = 1), Euclidean or
flat three-dimensional space (K = 0), or a three-dimensional hyperboloid or saddle
(K = −1). The two-dimensional analogues are pictured in figure 3.

The brightest side of the Big Bang model is the prediction of universal expansion.
What set the universe in motion? The question does not make sense. It’s like asking
what keeps a free particle moving, as Aristotelian physicists would do. The cosmolog-
ical expansion is a generic feature of any space-time satisfying Einstein’s equations,
as they were written above. Only a restless universe is consistent with relativity; and
that is just what was discovered by observation.

3. The spooky side of Big Bang cosmology

The Big Bang model is a success. It offers the most minimalistic explanation for all
the observations currently available. It explains the cosmic microwave background.
It explains the abundances of the lighter elements, through a process called primor-
dial nucleosynthesis. It provides an explanation for how structures, such as galaxies,
form in a universe that is very homogeneous at early times, indeed at any time at
very large scales. This is only to mention a few striking successes of the Big Bang
model. Competitors to the Big Bang model, such as the steady-state model, lost
their elegance and predictive power as more and more data accumulated.

In the late 1970s, however, it became apparent that not all was a bed of roses with
the Big Bang model. Even though the model proved unbeatable when confronting
observation, it required a large amount of coincidence and fine tuning, which one
would rather do without. These difficulties are referred to as the horizon, flatness
and Lambda problems, which we now describe (see Linde (1990) for a review).
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Figure 4. Conformal diagram (light at 45◦) showing the horizon structure in the Big Bang
model. Our past light cone contains regions outside each other’s horizon.

(a) Horizons in the universe

Creation entails limitation. Universes marked by a creation event, such as the Big
Bang universe, suffer from a disquieting phenomenon known as the horizon effect:
observers can only see a finite portion of the universe. The horizon effect can be
qualitatively understood from the fact that, since light takes time to travel, distant
objects are always seen as they were in the past. Given that creation imposes a
boundary in the past, this means that for any observer there must also be a boundary
in space. A distance must exist beyond which nothing can be seen, as one would be
seeing objects before the creation. Such a boundary is called the horizon.

The existence of horizons is not by itself a problem. The problem is that the horizon
is tiny at early times. If we ignore expansion effects, the current horizon radius is 15
billion light years, corresponding to our age of 15 billion years. When the universe
was 100 000 years old, the horizon radius was only 100 000 light years. If we look far
enough we can see the 100 000-year-old universe. As figure 4 shows, we should be
able to see many regions that were outside each other’s horizons at that time.

The celebrated cosmic microwave background radiation is, in fact, a glow emitted
by the universe when it was 100 000 years old. One can show that a horizon region
at this time subtends in the sky an angle of ca. 1◦, the size of the Moon. We can see
many of these regions, and they all agree to have the same temperature to a high
degree of accuracy.

The horizon problem is our ability to see disconnected horizons in our past, and the
fact that these horizons are seen to share the same properties, such as temperature
or density. The horizon effect prevents any causal equilibration mechanism from
explaining this remarkable coincidence. In a sense, the horizon problem is really
a homogeneity problem: the uncanny homogeneity of the universe across causally
disconnected regions.

Expansion complicates this reasoning a bit, but not enough to solve the problem
in a Big Bang universe. When we discuss the inflationary universe, we shall include
the effects of expansion into the discussion, and show how they may be used to solve
this riddle.
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(b) Walking on a tightrope without falling off

The first Friedmann equation (2.3) shows that there are two contributions to
expansion. On its right-hand side we see that matter and, if present, curvature con-
tribute to expansion. How does their relative importance evolve in time?

The two Friedmann equations may be combined into a single equation

ρ̇ + 3
ȧ

a

(
ρ +

p

c2

)
= 0, (3.1)

which represents energy conservation. This implies that pressureless matter (p = 0) is
diluted as ρ ∝ 1/a3, the dilution rate corresponding to volume expansion. Radiation
(p = 1

3ρc2) is diluted as ρ ∝ 1/a4, the extra factor corresponding to the fact that the
radiation pressure is doing work as the universe expands. Equation (2.3) then shows
that the ratio between the contribution to expansion due to curvature, and that
due to matter (radiation), increases with a (a2). This means that the flat model is
unstable! This conflicts with the fact that we are now close to flatness. Observations
show that the contributions to expansion due to matter and curvature are, at most,
of the same order of magnitude. How have we managed not to fall off the tightrope
of flatness? This is the flatness problem.

To put numbers into the problem, we know that the Big Bang universe has been
expanding since the so-called Planck time, tP = 10−42 s, when gravity became clas-
sical. We can work out that since then the expansion factor has increased by 1032,
or thereabouts, leading to a growth in any deviation from flatness by around 1064

since then. This means fine tuning the curvature contribution at Planck time by 64
orders of magnitude.

Falling off the flatness ridge is disastrous. Staring at the first Friedmann equation
(2.3), we see that closed models (K = 1) expand more slowly than flat models,
but open models (K = −1) expand faster. We can follow the evolution of non-flat
universes into their curvature-dominated epochs. Expansion in closed models keeps
slowing down relative to flat models until, eventually, expansion comes to a halt.
The curvature term cannot be bigger than the matter term (since the left-hand side
of (2.3) must be positive). Therefore, recollapse starts, retracing expansion’s steps,
until the universe ends in a ‘big crunch’. Open models expand ever more rapidly
compared with flat models. Therefore, the curvature term keeps increasing until the
matter is irrelevant. This means, however, that the universe is destined to become
totally empty. If the contribution to expansion from curvature is not negligible at
Planck time, one or other of these two tragedies would have occurred within a few
Planck times.

Only flat models offer a reasonable model for the universe as we see it. As we saw,
however, they are unstable, the tiniest trace of curvature is sufficient to derail them.

(c) Einstein’s greatest blunder

Self-flagellation has played an important role in modern science. At the start of
the 20th century there was no evidence for cosmological expansion. Relativity pre-
dicts expansion, with one exception: a closed universe dominated by a cosmological
constant. The cosmological constant represents the energy of the vacuum, and it
was introduced by Einstein to ward off expansion. When Hubble discovered expan-
sion a few years later, Einstein bitterly regretted having introduced the cosmological
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constant, thus missing yet another theoretical prediction for a major experimental
discovery. He called the cosmological constant ‘the biggest blunder of my life’.

The cosmological constant may be seen as an extra term one adds to curvature in
Einstein’s equations. This term is usually represented by Λ. It may be reinterpreted
as an extra fluid pervading the whole universe, with pressure pΛ = −ρΛc2, and mass
density ρΛ = Λc2/8πG. The cosmological constant is the stuff the vacuum is made
of.

The cosmological constant has a very negative pressure, that is, it is very tense
stuff. Inserting this fact into equation (3.1) leads to ρΛ = const. The vacuum does
not get diluted by expansion! This is because expansion is doing work against the Λ
tension. Therefore, at the same time, expansion dilutes the energy density in Λ; it
transfers energy into it, via this work.

We see that any traces of the cosmological constant would immediately dominate
the universe. Defining the ratio between the energy density in normal matter and in
Λ reveals that εΛ = ρΛ/ρ grows like a3 for matter, and like a4 for radiation. This
means a growth by 128 orders of magnitude since Planck time, when we know the
universe expansion must have started.

We have another, even thinner, tightrope to walk on.

4. God on amphetamine

In the end, history flushed Einstein’s greatest blunder into one of the main paradigms
of modern cosmology: inflation (Guth 1981; Linde 1982, 1983; Albrecht & Steinhardt
1982). Inflation is a period in the early universe during which the dominant energy
contribution is the vacuum energy. Inflation is a brief affair with the cosmological
constant.

Inflation is a way of switching on the cosmological constant and then letting it
decay into ordinary matter. The trick is played by a field, called the inflaton field.
When the inflaton is switched on it dominates all other forms of matter, in the
catastrophe described above. However, this catastrophe brings luck. Integrating the
Friedmann equations with p = −ρc2 leads to a ∝ eHt, where the Hubble constant H
is now, indeed, a constant. We have exponential expansion. The universe therefore
inflates, and this, as we shall see, is enough to solve the flatness and horizon problems.

Inflation may be achieved with stuff less extreme than a temporary cosmological
constant. In fact, ρ + 3p/c2 < 0 is the generic condition for inflation. It means that
the gravitational mass of the universe is negative. For this reason, the cosmological
expansion accelerates instead of decelerating (M < 0 in figure 2). More precisely, ä >
0, as we can see from the second Friedmann equation (2.4). A period of inflationary
expansion is sometimes also called ‘superluminal expansion’.

(a) Opening up horizons

In our discussion of the horizon problem we neglected expansion. Let us now refine
the argument. The horizon size is the distance travelled by light since the Big Bang.
However, is this really one light year in a one-year-old universe? Travelling in an
expanding universe entails a surprise: the distance from the departure point is larger
than the distance travelled. This is because expansion keeps stretching the distance
already travelled. Imagine a cosmic motorway, realized if the Earth were expanding
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very fast. Then a trip from London to Durham might show on the odometer that 300
miles have been travelled, whereas the actual distance between the two places at the
end of the trip would be 900 miles. Similarly, in a 15 billion year old universe, light
would have travelled 15 billion light years since the Big Bang. However, the distance
to its starting point would be roughly 45 billion light years, the current size of the
horizon.

This subtlety does not change the essence of the discussion of the horizon effect in
Big Bang models, but inflation builds upon this subtlety. With superluminal expan-
sion, the distance travelled by light since the start of inflation becomes essentially
infinite. Under amphetaminic expansion, light travels a finite distance, but expansion
works ‘faster than light’, infinitely stretching the distance from departure.

Therefore, inflation opens up the horizons. The whole universe observable nowa-
days was, before inflation, a tiny bit of the universe well in causal contact. This was
then blown up by a period of inflation. We have solved the horizon problem.

(b) The valley of flatness

If we insert a cosmological constant into the flatness problem argument, we find a
pleasant reversal of the situation. Now the contribution to expansion due to matter
(which is ρΛ) remains constant, whereas the contribution due to curvature decays
like 1/a2. The ratio between curvature and matter contributions now decreases like
1/a2 instead of increasing like a2. Flatness becomes a valley, rather than a ridge.

Because the expansion factor is increasing exponentially, within a very short time
any deviation from flatness becomes infinitesimally small. At the end of inflation the
contribution to expansion from curvature is smaller than 10−64. We have achieved
the fine tuning required to survive the Big Bang flatness tightrope. Inflation provides
the primordial balancing pole to allow us to walk the tightrope without falling off.

(c) The end of the nothing

At the end of inflation, the inflaton field decays into radiation in a process known
as reheating. The normal course of the Big Bang resumes, but the worst Big Bang
nightmares have been staved off. It is no longer a coincidence that the universe is
homogeneous across so many disconnected horizons. All these separate horizons went
to the same nursery school. The instabilities of the sensible brand of Big Bang models
(the flat ones) are no longer a concern. A period of inflation finely tuned the universe;
it gave it the stability at birth required for the universe to cope with its ‘instabilities’
in later life.

The only problem inflation does not solve is of course the Λ problem. Inflation is
built upon it. If in addition to the inflaton effective Λ, which turns on and off, there is
a genuine cosmological constant, this will still be present at the end of inflation. The
energy densities for both Λ remain constant, and, therefore, at fixed ratio, during
inflation. Hence, a genuine Λ would still threaten to dominate the universe at any
time after inflation. Inflation does not provide the fine tuning required to solve the
Λ instability of the Big Bang.

5. Was there life before the Big Bang?

There have been several attempts to solve the Big Bang riddles by plunging into
the Planck time, tP = 10−42 s, before which the temperatures in the universe are so
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Figure 5. The scale factor evolution in the ‘bouncing universe’.

high that gravity, and, therefore, the evolution of the universe, become dominated
by quantum effects. Perhaps the most challenging approach is quantum cosmology:
an attempt to describe the universe with a wave function, hopefully subject to a
Schrödinger-type equation. We shall not describe this side of the story. Instead, we
will present a few ideas suggesting that before the Big Bang there may have been
another classical period in the life of the universe. In this previous incarnation one
seeks solutions to the cosmological puzzles.

Historically, the first such attempt was the ‘bouncing universe’ (see Zeldovich &
Novikov 1983). Closed universes expand to a maximum size and then recollapse,
eventually reaching a ‘big crunch’. What if the crunch bounced into a bang? This
cannot be achieved classically but may be possible due to quantum effects, although
this remains a speculation. In figure 5 we plot the typical evolution of the scale factor
a in such models. The maximum size of the universe is related to its entropy. The
second law of thermodynamics then requires that the ‘bouncing universe’ gets bigger
in each cycle.

A ‘bouncing universe’ does not have a horizon. To see this, let us ask the question:
can a light ray in a closed universe ever get back to its starting point? Are there
Magellanic photons in a spherical universe? The answer is yes: if a ray sets off at the
Big Bang, it travels around the universe and gets back to the departure point at the
‘big crunch’. Hence, after the first cycle all points have been in causal contact. It is
only if we are unaware of the cycles preceding our own that we may infer a horizon
problem.

However, it turns out that even though we have solved the horizon problem, we
have not solved the homogeneity problem. Ensuring causal contact between the whole
observable universe allows for an equilibration mechanism to homogenize the whole
universe, but such a mechanism must still be proposed and be efficient enough. No
such mechanism seems to be present in ‘bouncing universes’.

A more modern way to explore life before the Big Bang was recently inspired by
string theory (Gasperini & Veneziano 1993). In string theory, there are a number of
duality symmetries, typically involving transforming big things into small things and
strong coupling into weak coupling. In the context of cosmology this is reflected in a
scale-factor transformation of the form a(t) → a−1(−t). This permits the extension
of the history of the universe into times before the Big Bang: times t < 0. For such
times, the solution dual to the radiation post-Big Bang solution is a ∝ (−t)−1/2. We
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Figure 6. The scale factor evolution in pre-Big Bang cosmology

have accelerated expansion: ä > 0 and, therefore, we have inflation. The typical time
evolution of the scale factor is described in figure 6.

The pre-Big Bang scenario is really another way of getting inflation, but this time
inflation occurs before the Big Bang. The pre-Big Bang scenario solves the horizon
and flatness problems in the same way as inflation, but the timing is completely
different.

Another aspect of the duality transformation assisting pre-Big Bang cosmology
involves a field called the dilaton φ. The dilaton appears, in all attempts, to derive
low energy limits to string theory. It plays the role of a coupling constant for all
interactions, or rather the couplings are given by, for example, G = eφ. The duality
transformation described above requires a transformation upon the dilaton of the
form φ → φ + 6 log(a). Hence, the radiation-dominated Big Bang solution, with
constant dilaton φ = φ0 (that is with stabilized constants), is mapped in the pre-Big
Bang epoch into a solution of the form φ = φ0 − 3 log(−t/t0). When t → −∞ we
have φ → −∞, and so the generic coupling constant G → 0. This means the pre-Big
Bang universe emerges from an epoch in which the interactions were switched off.

The overall picture is that the universe starts from the very weak coupling regime,
evolving into strong coupling. Interactions switch on. In the process, inflation is also
triggered, solving the riddles of the Big Bang. Deep in the strong coupling regime
string theory effects become important and lead the universe into the post-Big Bang
stage. We do not know what happens in the Big Bang. However, we hope that
the duality transformations assisting string theory will be enough to perform the
mapping between these two stages in the life of the universe.

6. Quick-light

The special theory of relativity has dominated 20th century physics. More than the
general theory, the special theory has become part of the fabric of physics. Special
relativity has been successfully combined with quantum mechanics to striking effect.
Quantum field theory emerged from the union, with an array of spectacular predic-
tions leading to modern particle physics. Good examples are the discovery of new
particles and antiparticles, the electroweak theory and the prospect of unification
(and the crucial idea of spontaneous symmetry breaking), as well as all sorts of high
precision quantitative predictions concerning interactions and their cross-sections.
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Central to special relativity is the idea that the speed of light c is a constant.
Regardless of the speed of the emitting or observing object, light moves at the same
speed: ca. 300 000 km s−1. Nothing can travel faster than light. The invariance of c
imposes a symmetry group on physics, called Lorentz symmetry. Only if space and
time transform in a specific manner between different observers can the speed of
light be the same for all of them. The implications of the Lorentz transformation are
immensely popular. The (Lorentz) contraction of moving bodies, time dilation and
the twin ‘paradox’ are now well known to everyone.

(a) Varying speed of light

What if the speed of light were to change during the lifetime of the universe,
however? ‘Varying constant’ theories have been proposed, starting with Dirac’s idea
of varying the gravitational constant G. In attempting to explain the constants of
nature, one should allow them to vary and then see if a physical mechanism can
be found that crystallizes their values into fixed quantities. If so, we may hope that
these values are the ones we observe. This project has not been terribly successful.
However, as a byproduct it has left us with great insights into what physics would
be like if, indeed, the constants of nature were variables.

A good example is the Jordan–Brans–Dicke theory, in which the gravitational
constant G is a variable. In this theory the gravitational constant is the result of the
matter content of the universe. As the cosmic density changes, G changes as well.
Such theories have led to interesting cosmological models, and attempts to solve Big
Bang riddles with them have been made, albeit unsuccessfully. Another example is
the theory proposed by Bekenstein, in which the electron charge e is a field. String
theories predict that all charges are in fact variable and related to a single field, the
dilaton field.

Varying speed of light (VSL) is based on a similar exercise applied to c (Moffat
1993; Albrecht & Magueijo 1999; Barrow 1999). In the simplest implementation of
VSL, c drops in a sharp phase transition in the early universe. Light was much faster
in the early universe.

There is an element of criminal negligence in VSL. In VSL, all observers at the
same point, at the same time, but possibly moving relative to each other, see the
same c. Again, nothing can travel faster than light. However, Lorentz symmetry is
broken and once this happens we are in the dark. Lorentz symmetry has been the
guiding principle used to set up all new theories in the 20th century. If we discard
it, what new guidelines can we adopt?

We postulate a principle of minimal coupling. This simply means replacing c with
a field c(t,x) wherever it occurs in selected laws. Such a minimal coupling principle
guided the construction of other ‘varying-constant’ theories. It ensures that nothing
new happens when the ‘varying constants’ are kept fixed. It also ensures that minimal
changes are introduced when ‘varying constants’ do vary.

Minimal coupling cannot be consistently applied in all laws. We decided to apply
it to the field equations: in the case of gravity, to Einstein’s equations. Curvature is
not affected by VSL, and the way matter generates curvature is the same as before.
In some loose sense we have general relativity without special relativity.

In the context of cosmology this means simply replacing c with a variable c(t) in
equations (2.3) and (2.4). The matter content in the early universe is still relativistic
so a ∝ t1/2. We don’t have superluminal expansion.
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our sky
us, now

Big Bang (t=0)

phase transitionall points in the
sky are in one horizon time

time

Figure 7. Diagram showing the horizon structure in a model in which, at time tc, the speed of
light changed from c− to c+ � c−. Light travels at 45◦ after tc but it travels at a much smaller
angle with the space axis before tc. Hence, it is possible for the horizon at tc to be much larger
than the portion of the universe at tc intersecting our past light cone. All regions in our past
have then always been in causal contact.

(b) Quick-light years

It is immediately obvious that quick-light in the early universe solves the horizon
problem. Look at figure 7, in which we redraw figure 4 assuming that the speed
of light was much larger in the early universe than it is nowadays, dropping to its
current value in a sharp phase transition at t = tc. We don’t need to play tricks
with expansion in order to establish causal contact between the whole observable
universe. Even without expansion (so that dh = ct, when c is constant), the quick-
light pervading the early universe would have been enough to connect the whole
observable universe.

Suppose that the transition happened when the universe was one year old. The
horizon was then one quick-light year across, easily bigger than 15 billion normal-
light years, if quick-light is fast enough. If such a phase transition occurred at Planck
time (tc = tP), then light would need to have been 1032 times faster than nowadays
to solve the horizon problem.

(c) Another valley for flatness

Energy conservation appears in relativity as a consistency condition for Einstein’s
equations. For instance, before equations (2.3) and (2.4) can be solved, one must
satisfy conservation equation (3.1), as the latter is implicit in the former two. This
is only true if c is a constant. If c is allowed to vary, then combining equations (2.3)
and (2.4) leads to

ρ̇ + 3
ȧ

a

(
ρ +

p

c2

)
=

3Kc2

4πGa2

ċ

c
, (6.1)

implying lack of energy conservation.
It is not surprising that energy conservation must be violated in such a theory.

Conservation laws are the result of symmetries: that is the modern way to look at
it. For instance, conservation of angular momentum is a consequence of isotropy, the
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symmetry according to which the universe looks the same in all directions. Energy
conservation results from invariance under time translations: the laws of physics are
the same at all times. This is clearly not the case if the speed of light changes: the laws
of physics change fundamentally as the speed of light changes. Therefore, there must
indeed be violations of energy conservation if ċ/c �= 0, as shown by equation (6.1).

Lack of energy conservation pays its dividends. For a given expansion rate, ȧ/a, we
can diagnose the geometry of the universe by comparing its density with the density
corresponding to the flat case

ρc =
3
8π

ȧ

a

(see equation (2.3)). The density ρc is called the critical density, and if the density
is supercritical, ρ > ρc, the universe is closed; if the density is subcritical, ρ < ρc,
the universe is open. Now let us stare at equation (6.1); we see that if the speed of
light decreases (ċ/c < 0), then matter is created if the universe is open (K = −1
and ρ < ρc), but disappears if the universe is closed (K = 1 and ρ > ρc). There is
no creation or annihilation if the universe is flat (K = 0 and ρ = ρc). Hence, VSL
creates matter if we are subcritical, subtracts it if we are supercritical. Again we
have produced a valley for flatness.

It can be shown that a drop in c by 32 orders of magnitude at Planck time would
provide sufficient fine tuning for a flat universe to be seen nowadays.

(d) Exorcising the nothing

Finally, VSL solves the cosmological constant problem. Einstein introduced Λ into
his equations as an extra geometrical term. However, the dynamical importance
of Λ can only be inferred when we reinterpret it as a fluid, with a density that
remains constant under expansion, and with pΛ = −ρΛc2. The density of this fluid
is ρΛ = Λc2/(16πG), and, because ρΛ ∝ c2, we see how a drop in c reduces the
dynamical significance of Λ. If c drops by more than 64 orders of magnitude at
Planck time, then indeed ρΛ 	 ρ nowadays. We have exorcised vacuum domination.

Celebrations of this triumph were interrupted by disturbing claims for observa-
tional evidence that the cosmic expansion is accelerating, ä > 0 (Perlmutter et al .
1998). This implies that Λ is still with us and is about to dominate the universe. We
are about to enter a period of inflation!

This is horrifying. All galaxies will soon recede away from us so fast that we will
not be able to see them. We will soon be confined to our galaxy island, with nothing
but the Λ vacuum to keep us company, in cosmic loneliness. We will end up in an
island universe, as Kant envisaged. Explaining why Λ is only now about to dominate
the universe is an outstanding challenge. Why now? Why not immediately after the
Planck time? Why not never?

As this review goes to press, one of the authors is suffering from insomnia due to
this humiliating riddle.

7. An appraisal of current cosmology

In this review we provided a rather diluted version of a very technical field. We
described how the Big Bang model converted cosmology into a successful science.
We showed how its riddles have provided insights into theories of the very early
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universe, when the Big Bang must be replaced by something more fundamental. We
described three classes of models. Inflation is now a paradigm, pre-Big Bang models
are a popular tentative idea, while VSL theories are outright speculation. In the
words of a distinguished Cambridge professor, ‘VSL is a step back from relativity’.

In order to make this review more accessible, we highlighted the least technical
aspects of the Big Bang riddles. This necessarily distorts the field. Perhaps the biggest
riddle of all is the emergence of structure in a universe known to be very homogeneous
at early times. All the above theories can answer this riddle, but in ways too technical
for a light-hearted review like this one.

Nonetheless, structure formation is really the testing ground where experiment
may one day decide between all these ideas. We can measure the properties of galaxy
clustering, and also the power spectrum in the cosmic microwave background (CMB)
anisotropies. Theories of the early universe make very different predictions for these
observations. A new generation of satellite CMB experiments, plus new galaxy sur-
veys, leave us at a threshold. In the 21st century it could well be decided which, if
any, of the above ideas is correct.

The most exciting possibility is, of course, that all the current ideas are proved
wrong. For that reason, we believe that this is a bad time to adopt a dogmatic view
in cosmology. Instead, we should try out as many new ideas as possible. Who knows,
even so they may still all be wrong. We advocate promiscuity in science.

J.M. is indebted to Andy Albrecht, John Barrow and John Moffat for shaping his views on the
cosmological problems. We thank the referee and David Sington for forcing us to clarify the
more obscure parts of the text. We finally acknowledge financial support from the Royal Society
(J.M.) and PPARC (K.B.).
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